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An elementary derivation is given of the formula for the thermal equilibrium 
states of quantum systems that can be described in finite-dimensional Hilbert 
spaces. The three assumptions made, Passivity, Structural Stability, and 
Consistency, have phenomenological interpretations. Except at zero tem- 
perature, Structural Stability follows already from Passivity and a weak 
form of Consistency. 
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1 .  I N T R O D U C T I O N  

The basic formula of  equilibrium statistical mechanics is 

p = (1 /Z)e  -an  (1) 

where/3 and Z are constants. I t  may of course be regarded as an axiom, but 
various justifications of  it can be given. Such justifications are a standard 
feature of the textbook literature, indeed they go back to the creator of  
statistical mechanics, J. Willard Gibbs. <1~ In recent years a number of  attempts 
have been made to derive the nature of thermal equilibrium states from 
phenomenologically motivated postulates, using standards of  rigor typical 
of  modern mathematical physics. A characteristic feature of  this literature 2 
is the consideration of systems with infinitely many degrees of  freedom. This 
is justified on the ground that thermodynamics deals with spatially homo- 
geneous properties of  physical objects, and that can be modelled only with 
mechanical systems that have infinitely many degrees of  freedom. In this view, 
finite systems are only approximations from which the true models arise by 
limiting processes. While this attitude is philosophically cogent, and has even 

1 Departments of Mathematics and Physics, Indiana University, Bloomington, Indiana. 
2 For a review see, for instance, Ref. 2. 
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mathematical advantages, there can be no doubt that the necessary mathe- 
matics is quite technical. For  this reason alone, it would seem justified to 
give a rigorous derivation of the Gibbsian formula (1) from first principles, 
using only mathematics familiar to the average theoretical physicist. 

This will be done in the following, starting from three principles, to be 
called Passivity, Structural Stability, and Consistency. The first of these, 
introduced in a recent interesting paper by Pusz and Woronowiczf a) can be 
thought of as a form of the Second Law of Thermodynamics: No work can be 
obtained from an adiabatically isolated system in thermal equilibrium by 
varying external parameters. This defines the concept of a passive (statistical) 
state. By structural stability is meant, roughly speaking, that if the parameters 
of the system are slightly varied, then the altered system still has a passive 
state close to the passive state of the original one. The third principle has to 
do with the qualitative idea of equality of temperature, what is sometimes 
called the Zeroth Law of Thermodynamics. Consistency requires that one 
should be able to assign to every system a structurally stable passive state in 
such a manner that the state assigned to a composite system is the product 
of the states assigned to the components. 

Of course these principles can be mathematically implemented only if 
one makes a precise definition of  what is meant by a "system." To eliminate 
altogether the need for technicalities (unbounded operators, C*-algebras, 
etc.) we restrict ourselves to quantum systems that can be described in a 
finite-dimensional Hilbert space. From a mathematical point of view, a 
"sys tem" will be therefore a pair (o~, H), where W is a finite-dimensional 
complex Hilbert space and H is a self-adjoint operator acting in ~ .  A state- 
of  such a system is specified, in the well-known manner, by a positive operator 
p of trace 1. 

In the sections to follow we answer successively the questions: When is 
p passive ? When is p structurally stable ? When does p belong to a consistent 
family of states? The final answer is easily stated: Precisely when o is of the 
form (1) with 0 ~</3 ~< oo. 

2. PASSIVE STATES 

Let (W,, H)  be any system, dim(~')  < oo, H a self-adjoint operator acting 
in ~ .  By a time-limited perturbation K of H we mean a function on the reaI 
line whose values are self-adjoint operators K(t) acting in ~ ,  subject to two 
conditions. First, K is of class ~z (has a continuous derivative with respect to 
t), and, second, K(t) = H for all t ~< 0 and t >/ 1. If  K(t) is regarded as a 
time-dependent Hamiltonian, a state of the system evolves in time according 
to the differential equation 

i dp(t)/dt = [K(t), p(t)] (2) 
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where, as usual, [A, B] = A B  - BA. The total work done by the perturba- 
tion on the system (to be precise, the expectation value of the total work) is 

W(K,  Po) = Tr  p(t) dt (3) 

where po = p(0). A state Po of the system (~ ,  H)  is called passive if  W(K,  Po) >>- 0 
for all time-limited perturbations K. This definition is due to Pusz and 
Woronowicz. (a) 

Given a time-limited perturbation K, we associate with it a function U 
defined on the real axis as follows. U(t) is the solution of the differential 
equation 

i dU(t) /dt  = e~tHK(t)e-it~zU(t) -- H U ( t )  (4) 

which satisfies U(0) = 1. Now U is of class c~2, U(t) is unitary for all t, 
U(t) = 1 for t <<. O, U(t) = U1 is constant for t /> 1. When K is expressed 
in terms of U, 

K(t)  = H + ie -~tn dU(t )  dt U*(t)e't~ (5) 

it is seen that from the listed properties of U it follows that K is a time- 
limited perturbation of H. An elementary calculation shows that the solution 
of (2) subject to p(0) = po is given by 

p(t) = e-~HU(t)ooU*(t )g  t~ (6) 

One consequence of this is the identity Tr[p(1)K(1)] = Tr(poUI*HU1), so 
that integration by parts in (3) yields 

W(K,  Po) = Tr(poU~*HU~) - Tr(poH) (7) 

This shows that W depends on the function K only through U1, which must 
of course be regarded as a functional of  K. 

Theorem 1.3 A state po for the system (~f~, H)  is passive if and only if 
Tr(poUI*HU1) >1 Tr(poH) for all unitary operators U1 acting in ~ .  

Proof. It is obvious from (7) that the condition is sufficient for passivity. 
To show its necessity, let po be a passive state and O"1 any unitary operator. 
Let U(t) be obtained from U~ by retaining its eigenvectors and replacing 
each of its eigenvalues, say e ~~ by e ~m>~ wheref i s  a function of class 5 2 such 
that f ( t )  = 0 for t <~ O, f ( t )  = 1 for t >1 1. Then define K by (5). This 
implies that (7) holds, whence the required inequality. QED 

3 This is just Theorem 2.1 of Ref. 3, expressed in the language of elementary quantum 
mechanics. 
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Given two self-adjoint operators A and B acting in the finite-dimensional 
Hilbert space ~ ,  when is it true that the function U ~ Tr(A U*BU), defined 
over the set of  unitary U, assumes its minimum at U = 1 ? 

T h e o r e m  2. Let dim(~Vf)< oo, A and B self-adjoint. Then U---~ 
Tr(A U*BU)is a minimum with respect to unitary U at U -= 1 if and only if 

contains an orthonormal basis of common eigenvectors for A and B and 
the eigenvalues ~j of A and flj of B satisfy (=j - ~k)(/3j - 13~) ~< 0 for all 
j and k. 

ProoL Let A and B have common eigenvectors, and U be an arbitrary 
unitary operator acting in ~ .  Let the matrix of  U with respect to the eigen- 
vector basis be (uj~). Then 

Tr(A U*BU) = ~ ~ o~jflklujkl 2 (8) 
j ic 

The matrix (]ujk] 2) is doubly stochastic (nonnegative entries, row and column 
sums equal I). Doubly stochastic square matrices of a given size from a 
convex set whose extremal elements are the permutation matrices. (4> There= 
fore 

Tr(A U*BU) = (9) 
n j 

for suitable c~ i> 0, ~ ,  c~ = I, where zr runs over the permutations of  
I,  2,..., n = dim(~Vf). I f  we assume that aj < ag implies fij >i ilk, then (5> 

J J 

for all ~r, as was to be shown. Conversely, assume that the minimum occurs 
at U = I. In the neighborhood of I, U can be parametrized as a power 
series 

U =  1 + 2 M +  2M 2 + 2 M  3 +-. .  ( I I )  

where M* = - M a n d  I[M][ < 1. Thus 

Tr(AU*BU) = Tr(AB) + 2 Tr([A, BIM) + O(IIM [I =) (12) 

whence it follows that Tr[A, B]M = 0 for all skew-adjoint (and therefore all) 
M. This means [A, B] = 0, so that A and B can be simultaneously diagonalized. 
Let Uo be the one-parameter family of unitary operators acting as the matrix 

cos 0 sin 0~ 

- s i n 0  c o s 0 /  

in the subspase of the two joint eigenvectors of d and B corresponding to 
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the eigenvalues % and =k of A, flj and fl~ of B, and the identity in the or- 
thogonal complement. Then 

Tr(AUo*BUo) - Tr(AB) = - ( a j  - ak)(flj -/3~) sin ~' 0 (13) 

and this has a minimum at 0 = 0 only if (r - ~k)(flj - /3k) ~< 0. QED 

The first part of our analysis is complete: A state p for the system (~ ,  H) 
is passive i f  and only i f  p and H commute and their simultaneous corresponding 
eigenvalues, ~j of  H and hj of  p, have the property that ~s < ~k implies hj >>. hk. 

3. S T R U C T U R A L  STABIL ITY  

A passive state po of  the system (~ ,  H0) will be called structurally stable 
if, given any neighborhood JV" of po, no matter how small, there is some 
neighborhood Jr of Ho such that for every H e J [  there is at least one state 
p ~ ~ which is passive for the system (~ ,  H). Roughly speaking, a small 
change in the Hamiltonian allows a small change in the state without destroy- 
ing its passivity. The relevance of a condition like this for determining the 
nature of a thermal equilibrium state was emphasized by Haag and co- 
workers. ~6> 

T h e o r e m  3. A passive state po for the system (~ ,  Ho) is structurally 
stable if and only if there is a nonincreasing functionfdefined on the spectrum 
of  Ho such that po = f(Ho). 

I f  ~s ~ and ,~j0 are the respective eigenvalues of H0 and po, passivity of  po 
demands that Ej ~ < ~k ~ implies ,~jo 1> ~ko. The stronger condition of structural 
stability demands that, in addition, ~j0 = %o implies ~j0 = ,~ko. 

Proof of Theorem 3. Suppose that a funct ionfwith the stated properties 
exists. It can be extended to a continuous, nonincreasing, nonnegative func- 
tion on the whole real line. Since Trf (Ho)  = 1, clearlyf(x) > 0 for sufficiently 
large, negative x. Let 

1 
F(H) = Tr f ( H ) f ( H  ) (14) 

be defined as a continuous function on the set of those self-adjoint operators 
H for which T r f ( H )  > 0. For  every H in this set, F(H) is a state, and 
F(Ho) = po. Let .W" be any neighborhood of po, and let J / b e  the complete 
inverse image F - l ( j / - )  of  this neighborhood under F. This ~g is an open 
set because F is continuous, and Hoe JL Let H e  J [ ;  then F(H) = p e 
Sincef i s  nonincreasing ej < E k implies ~j /> ~k for the eigenvalues of  H and 
p, respectively. Therefore p is a passive state for the system (~ ,  H). This 
shows that po is structurally stable. 
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To prove the converse, let 0o be a passive state for the system (~,  Ho), 
but suppose no funct ionfwith  the required properties exists. Then there are 
two eigenvalues el ~ and e2 ~ of Ho, corresponding to eigenvectors ~b 1 and ~b2, 
such that ~1 ~ --- E2 ~ but the corresponding eigenvalues of Po are unequal, 
say ,~o < ),2o. Let ~ be the open set in the space of states defined by the 
inequality 

(4,~, P~,~) < (,b~, p,h) (15) 

Evidently po E ~ .  Let J{  be any neighborhood of Ho. Choose an H ~ J /  
that has distinct eigenvalues and shares its eigenvectors with Ho and p0, and 
moreover its eigenvalues corresponding to ~bl and ~b2 satisfy E~ < e2. Let p be 
any passive state for the system (~,  H). Then its eigenvalues corresponding 
to ~bx and ~b2 must satisfy 2,1 /> ~2. This shows that p 6 ~ ,  and therefore p0 
is not structurally stable. QED 

4, C O N S I S T E N C Y  A N D  T H E R M A L  E Q U I L I B R I U M  STATES 

The above analysis depends on properties of systems that can be formu- 
lated by considering each system in isolation by itself. That such an analysis 
cannot lead to the Gibbsian formula (1) for thermal equilibrium states is not 
surprising, since the essence of the thermal equilibrium phenomenon is the 
notion of temperature, and that is connected with the so-called Zeroth Law 
of Thermodynamics, involving as it does, systems in "thermal contact." To 
say that a particular system is in thermal equilibrium, by itself, is meaningless 
unless one imagines that all other systems have suitable states with which the 
given system can be compounded without any observable changes resulting. 
Strictly speaking, thermal contact will cause a slight adjustment of the state 
of the two systems brought together, but this is a small boundary effect that 
can be neglected. These informal remarks motivate the following definitions. 

A consistent family R of structurally stable passive states (briefly, a 
consistent family) is a function defined on the class 50 of all systems (~,  H) 
under consideration such that p = R(~,  H) is a structurally stable, passive 
state for the system (~ ,  H) ~ ~ and such that for any two systems (~,  H) 
and ( ~ ' ,  H')  in 6 a the identity 

R ( ~  | ~r H | 1' + 1 | H')  = R(~,  H) | R(3f", H')  (16) 

holds. The system (o~4e | ~ " ,  H | 1' + 1 | H')  represents the compound 
of the two given systems, "interaction neglected." This neglect is conceptually 
justified by insisting that all states in the range of R are structurally stable. 
The consistent family R is our mathematical model for the notion of equality 
of temperature. It is entirely qualitative, as is the temperature notion in 
thermodynamics. 
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A state p0 for a system (~o,/40) will be called a thermal equilibrium state 
if a consistent family R exists such that p0 = R(~0, Ho). 

The mathematically minded reader may be inclined perhaps to worry 
about the obscurity of 5~, the class of " a l l "  systems. To be precise here, one 
should take 5 f to mean any indexed set of systems {(~, Ha): ~ e A} where 
the index set A is really irrelevant as long as it is large enough. We only insist 
on two requirements. First, for any two systems belonging to S~, their com- 
pound (tensor product Hilbert space, Hamiltonians added) also belongs to 
Second, given any spectrum, that is, a nonempty, finite set of real numbers 
with finite multiplicities, there is at least one system belonging to 5 a whose 
Hamiltonian has the given spectrum. Otherwise the reader may fancy A to 
be as large as he pleases. 

I f  two systems have Hilbert spaces of the same dimension and the spectra 
of  their Hamiltonians differ only by an additive constant, we should regard 
them as having identical properties (from the present point of view). We call 
them equivalent. If  (~ ,  H)  and ( ~ ' ,  H ' )  are equivalent systems, a unitary 
operator U: ~ - +  Jr" exists, and a real number e, such that H '  = UHU* + el'. 

T h e o r e m  4. Let (Yf, H)  and (Yf', H ' )  be equivalent systems, U the 
unitary operator as above. I f  p and p' are structurally stable, passive states 
for the respective systems such that the product state p | p' is a structurally 
stable, passive state for the compound system, then p' = UpU*. 

Proof. Let ej and ~j be the corresponding eigenvalues of  H and p, 
respectively, and e/  = Ej + c and Aj.' the corresponding eigenvalues of  H '  
and p'. The eigenvalues of the compound Hamiltonian are the ej + e~ + e, 
the corresponding eigenvalues of the product state the ,~j1~'. By assumption, 
Ej + Ek ~< Eg + e~ implies ~s,~k' /> 1z,~m'. p has at least one positive eigenvalue, 
say A1. Taking k = l = 1, we see that Ej ~< E~ implies A~.;~I' /> ) , ~ ' ,  in 
particular ,~j1~' 1> ;~;~j-' for allj. Summing over j ,  one obtains AI' 1> 1z. Now 
take j = m = 1; this shows that e~ ~< E~ implies ,~,~e' I> ~z~', in particular 
~ t e '  i> '~k;~' for all k. Summing over k, one obtains ,~ >/ ~ ' ;  thus 11 = 
t1' > 0. But then 'V = '~J follows for allZ QED 

This theorem shows an important property of any consistent family R, 
namely that the spectrum of H (regarded modulo an additive constant) 
completely determines the spectrum of p = R(~ ,  H) ;  thus for equivalent 
systems the funct ionsfthat  figure in Theorem 3 are all the same. The spectrum 
of a system (~ ,  H)  with d i m ( ~ )  = 2 is determined (up to an irrelevant 
additive constant) by a single number x />  0, say q = 0, ~z = x. The 
spectrum {A~, 2,~} of the state p = R(~,  H)  is then completely determined 
by x; we write 

)t~/,~ = ~(x) (17) 
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Evidently 0 ~< q~(x) ~< 1, 4(0) = 1. But it is also easy to see that q~ is non- 
increasing. Indeed, consider the compound of two systems with two- 
dimensional Hilbert spaces, with energy spectra, say, {0, x} and {0, x'}. The 
spectrum of the compound system is {0, x, x' ,  x + x'}, while the spectrum 
of the state assigned to it by R has spectrum {~l?~x', ?,2~x', ~,1~2', ?,2~2'} in 
obvious notation. The conditibn of its passivity yields that x < x '  implies 
~ x '  t> ~,1h2', which means r /> ~(x'). 

We are now ready to prove the Gibbs formula (1). 

T h e o r e m  5. Suppose po is a thermal equilibrium state for the system 
(~o,  Ho). Then there are three possibilities. (I) po is a multiple of  the projec- 
tion operator corresponding to the smallest eigenvalue of Ho. (II) There is a 
positive number/3 such that po is a multiple of exp(-/3Ho). (III)  po is a multiple 
of the identity operator 1. 

ProoL By definition, there is a consistent family R such that P0 = 
R(Jgo, Ho). Let ~ be the function constructed from R as above. Let ( ~ ,  H)  
be an arbitrary system in the class 5a; Ej the eigenvalues of  H;  and A s the 
corresponding eigenvalues of p = R ( ~ ,  H).  Let (Jg~, H~) be a system with 
dim(Hx) = 2 and the eigenvalues of  Hx be 0 and x, where x is an arbitrarily 
chosen nonnegative number. The eigenvalues of  p ,  = R(~cf~, H, )  are then 
in the ratio 1 to ~(x). The eigenvalues of  the Hamiltonian for the compound 
of these two systems are the numbers ej and Ej + x. The state p | p~ assigned 
to it by R must be passive and structurally stable. Therefore Ej + x ~< ~k 
implies Ajg~(x) >/ ~k, while ~j + x >I eg implies ~jq~(x) ~< )tk. Choose x = 
E k - ~j; it follows that 

~ = a,~( ,~ - V) 0 8 )  

This is true for all k and j such that Eu >/~j. Now let x, y > 0 be arbitrary, 
and choose (~,, H )  so that E1 - ~2 = x, ~2 - ~a = Y. Then from (18) we 
obtain 

r = r + y) (19) 

valid for all x, y >/0. There are now three possibilities. ~ 
(I) ~(x) = 0 for all x > 0. In this ease, for any system (~ ,  H)  in St' whose 

Hamiltonian has the eigenvalues ~1 = ~= . . . . .  E~ < %+1 ~< E~+= ~< ... ~< E,, 
the state p - - - R ( ~ , H )  has the eigenvalues ),1 = ~t2 . . . . .  ;~ = k -x, 
hk + 1 . . . . .  h, = 0. Physically, this is the case of  zero temperature. 

(II) 6 is a nontrivial exponential function. Since it is nonincreasing it 
must have the form exp( - fix) with some/3 > 0. In this case h~ = Z -  1 exp( -/3%) 
for all k and for all systems (~ ,  H)  in 6<. Physically, this is the case of positive 
temperature. 

This follows from a theorem of Darboux. tT> 
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(III) ~ ( x ) =  1 for all x l> 0. in this case ,~1 = A2 . . . . .  A , = n  -1, 
where n = dim(~/f), for all systems (~,  H) in 5~. Physically, this is the case 
of infinite temperature. 

The proof is complete. 

5. C O M P L E T E  P A S S I V I T Y  

From the point of view of physics it is satisfactory that the nature or 
those statistical states that are intended models of thermal equilibrium can 
be derived rigorously from three natural postulates, rather than assumed as 
an axiom of statistical mechanics to be justified only a posteriori by its 
empirical success. It is the more remarkable that considerably less than our 
three postulates suffice--with one small reservation--for the derivation of the 
Gibbs formula. Except in the zero-temperature case, structural stability can 
be abandoned as a postulate. It can be proved as a theorem from the 
hypotheses of passivity and consistency. But even consistency can be replaced 
by a much weaker requirement, essentially the weakest possible one that 
makes sense. For a given system (~ ,  H) it is enough to consider the class 5Po 
of systems generated by it under the operation of forming compounds, and 
all that is required for a passive state p is to belong to a consistent family of 
states over the class 5:o. Systems belonging to this class are simply com- 
pounds made up out of a finite (but arbitrarily large) number of copies of 
(Jr H). The required property is called complete passivity; (3) formally 
stated, p is a completely passive state for the system ( ~ ,  H) if for all positive 
integers v the state p | p | .-. | p (v factors) is a passive state for the system 
obtained by compounding v copies of (~"/:, H). 

A criterion for complete passivity follows from the passivity criterion of 
Section 2. A state p for ( ~ ,  H) is completely passive if and only if p com- 
mutes with H, and for nonnegative integers aj and bj 

and 

imply 

aj = ~ b, (20) 

~ a j 6 j  < ~ b:~ (21) 

;~ja, /> ~ ~ ,  (22) 

where the E: and ;~j are the corresponding eigenvalues of H and ?, respectively, 
and 0 ~ is interpreted as 1 in (22). 

To handle the zero-temperature case correctly, we need a definition. A 
state po for the system (~,  H) is called a ground state if Tr(poH) ~< Tr(pH) 
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for all states p. I f  Yf is written as a direct sum Yf' @ 3r with respect to 
which H has the form 

o 0 
with all eigenvalues of  H" strictly larger than %, then a ground state has the 
form 

~ 
Note that p0' need not have equal eigenvalues, and if it does not, then p0 is 
not structurally stable. 

T h e o r e m  6. A ground state is completely passive. A completely passive 
state that is not a ground state is structurally stable. 

Proof. Let p be a ground state for (W, H) ;  E~ the eigenvalues of  H;  
;~j those of  p; and e0 the smallest eigenvalue of H. By definition, ~j = 0 when 
ej > %. Conditions (20) and (21) can be satisfied only if bj > 0, ej > %, for 
at least one j. But then the right-hand side of (22) vanishes, so that (22) is 
trivially satisfied. This proves the first part  of  the theorem. Suppose now that  
p is a completely passive state but not a ground state. In view of Theorem 3 
it must be shown that ej- = ek implies 2t~ = )t k. Let then j r k, ej = Ek. 
Suppose e~ < Ej = e~. Then, for any positive integer v, (v - 1)ej + ez < v%, 
so that from (22), ~,~- 1~ >I ;~k~. This shows ;~k ~< )tj and, sincej  and k can be 
interchanged, )~ = Aj. I f  ej = ek is the smallest eigenvalue of H, there is 
necessarily another eigenvalue e~ > Ej = ek with the corresponding eigenvalue 
~z of o positive, since O is not a ground state. In this case v% < (v-1)Ej+ez 
yields )tk ~ >/ )t~-l;~z, whence )~j ~< ;~k and therefore, as before, ~j = hk- 

T h e o r e m  7. A completely passive state is either a ground state or a 
thermal equilibrium state. 5 

Proof. Let O he a completely passive state for the system (~ ,  H) ;  ;~j the 
eigenvalues of  p; ej the corresponding eigenvalues of  H ;  and assume 0 is not 
a ground state. The eigenvalue ~o of p corresponding to the smallest eigen- 
value % of H is positive, and there is at least one other positive eigenvalue ~k 
of  p corresponding to e~ > % (since otherwise p would be a ground state). I f  
H has only two distinct eigenvalues, then the formula'p = f(H) demanded by 
Theorems 6 and 3 can always be written in the form (1) with a uniquely 
determined/3/> 0 and Z > 0, so that the conclusion of the theorem holds 
in this case. We assume henceforth that H has at least three distinct eigen- 
values. Let Ej be a third eigenvalue of H, and assume % < ej < e~. Then 

5 This is Theorem 1.4 of Pusz and Woronowitz, (a~ restricted to the systems considered 
here. 
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% + ei < 2ek shows hoAj ~> hk 2 > 0, whence hj > 0. Next ,  assume ej- > e~. 
Then ~j. + (v - 1)% < vE~ for  sufficiently large v, and this shows hjh~-1 i> 
Ak ~ > 0, whence hj > 0. Thus all eigenvalues of  p are positive; p is a strictly 
positive operator .  

Let  us consider three distinct eigenvalues q < E2 < % of  H,  assumed 
posit ive without  essential loss of  generality. Let 8 be an arbi trar i ly small  
posit ive number  and let az, a2, aa, and A be positive integers such tha t  the 
rat ional  numbers  a2/A, a3/A, and az/A are approximat ions  to q ,  E2, and  Ea, 
respectively, within 8, and such that  

Let  b~ = as,  b2 = a~, and b~ = a2, so tha t  (23) may  be rewritten 

aJ~l < Z bj~j (24) 

The complete passivity criterion (22) shows 

where rz = q - az/A,  r2 = E2 - aa/A, and rs = ea - al /A.  Since the Ir, I 
and 8 is arbitrari ly small, 

,~ q ,2 ,z ca ,1 (26)  AIA2Aa >i AIA2A~ 

i f  instead of  (23), the opposi te  inequality had been assumed,  the opposi te  of  
(26) would have resulted. This shows that  

h~'a A2 '~ Aa'2 = A~A~3A~ (27) 

Since all Aj > 0, this can also be writ ten 

A-~2I = \ ~ 1  (28) 

This shows that  for  distinct eigenvalues Ey < ~ of  H and corresponding 
eigenvalues Aj > A~ > 0 of  p the number  

~-~] t> 1 (29 )  

is independent  o f j  and k. Denote  it e ~, fl >>. O. The resulting equat ion shows 
that  

Thus  ,~e~'~ is independent  o f j .  This constant  is called Z -~, and the Gibbs  
formula  

Ay = (1 /Z)e  -e ' ,  (31) 

is established. Q E D  
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